17 Hanbury Close, Cheshunt, Herts EN8 9BZ

Environmental Ratios & Calculations

CO₂ emissions (tonnes) = Energy consumption (kWh) x Fuel emission factor (kg CO₂/kWh) x 0.001

 CO_2 emissions (tonnes) = Energy Consumption (kWh) x emission factor (kgCO₂/kWh) x 0.001

CO₂ emissions (tonnes) = 500×0.43 (this is the factor for electricity from the grid) $\times 0.001$

CO₂ baseline emissions = 0.22 tonnes CO₂/day

Energy and Fuel Consumed	Emission Factor (kg CO ₂ /kWh)
Electricity	
Electricity from grid	0.43
Renewable sources	0.00
F	
Fuels	0.10
Natural gas	0.19
Gas/diesel oil	0.25
Petrol	0.24
Heavy fuel oil	0.26
Coal	0.30
Coking coal	0.30
Coke	0.37
LPG	0.21
Jet kerosene	0.24
Ethane	0.20
Naphtha	0.26
Waste	0.25
Petroleum	0.34
Refinery gas	0.20
Other oil	0.24
Renewables	0.00
Reliewables	0.00

Table 2. Standard conversion factors for energy units

Energy Unit	Kilowatt hour (kWh) Equivalent
1 tonne oil equivalent	11630
1 therm	29.31
1 Giga joule	277.8

Table 3. Default calorific values Fuel Kilowatt hour per Kilowatt hour per tonne litre Solid fuels Coal (average) 7583 Coke 8277 Liquid fuels Ethane 14083 5.2 LPG 13722 7.4 Jet kerosene 10.3 12833 Petroleum 13083 9.6 Gas/diesel oil 12666 10.8 Fuel oil 11999 11.9 Lubricating oils 12555 11.1

To build the solution, first define the problem

Naphtha Crude oil (average) Petroleum products (average)	13249 12694 12555	9.1 10.7 9.3
Gaseous fuels		Kilowatt hour per m3
Natural gas COG		11.0 5.6
BFG		0.8
Landfill gas		10.7
Sewage gas		10.7
Solid renewables		
Domestic wood	2778	
Industrial wood	3305	
Straw	4166	
Poultry litter	2444	
General industrial waste	4444 3889	
Hospital waste Municipal solid waste	2639	
Refuse derived waste	5194	
Tyres	8888	

GHG Conversion

Green House Gases (GHG) have different properties which make some considerably more potent as greenhouse gases than others. Therefore, per unit emitted, different gases have differing degrees of impact upon global warming, due to the particular property of the gas (e.g. a longer atmospheric lifetime and/or higher efficiency at retaining and emitting heat within the atmosphere).

Therefore to compare the emissions of different GHGs all emissions are referred to as CO₂ equivalents (CO₂e) (i.e. the amount of CO₂ which would have to be released in order to have an equal impact on the atmosphere as the specific amount of another GHG released). This is a scale where CO₂ is the reference point and has a global warming potential of 1, every other GHG listed in the Kyoto Protocol (methane, nitrous oxide, sulphur hexafluoride, perfluorocarbons, hydrofluorocarbons) has a greater GWP compared to CO₂, see following table for details.

GHG	Multiply by the following factor to obtain the CO ₂ e value
CO ₂	1
CH4	23
N2O	296
SF ₆	22 200
HFCs	12 - 12 000
PFCs	5 700 - 11 900

(data source: Third Assessment IPCC report, 2001).